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Optimization problems are common in the real world, with many applications

in business and science that involve maximizing or minimizing some goal subject

to a set of given constraints. For example, we might like to maximize a profit given

a certain initial investment, or we might wish to minimize the error produced by a

computer simulation using a fixed number of CPUs. Thus, in such contexts, there

are in general two components to such optimization problems:

• a set of constraints that must be satisfied

• an objective function to maximize or minimize subject to the given con-

straints.

In a business application, for instance, the constraints might include the amount

of risk allowed in an investment portfolio, and in a scientific application, the con-

straints might be determined by the number of CPUs available to run a simulation.

In either case, often the objective is to maximize profit or minimize cost.

An Example Optimization Problem

As a more detailed application, suppose that a web server company wants to buy

new servers to replace outdated ones and has two options to choose from. There is

a standard model which costs $400, uses 300W of power, takes up two shelves of

a server rack, and can handle 1000 hits/min. There is also a cutting-edge model,

which costs $1600, uses 500W of power, but takes up only one shelf, and can

handle 2000 hits/min. With a budget of $36,800, 44 shelves of server space and

12,200W of power, how many units of each model should the company purchase

in order to maximize the number of hits it can serve every minute?

Let us introduce some variables, say x1 and x2, to represent the number of

servers for each model. Then the number of hits per minute that can be serviced by

x1 standard servers and x2 cutting-edge servers is

1000x1 + 2000x2.

Our goal is to maximize this quantity.

The number of servers the company should get is limited by three factors: the

budget, which translates into

400x1 + 1600x2 ≤ 36800,

the number of shelves that can be taken up by these servers,

2x1 + x2 ≤ 44,

and the amount of power these servers can use collectively,

300x1 + 500x2 ≤ 12200.
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Therefore, this optimization problem can be summarized as follows:

maximize: z = 1000x1 + 2000x2

subject to: 400x1 + 1600x2 ≤ 36800

2x1 + x2 ≤ 44

300x1 + 500x2 ≤ 12200

x1, x2 ≥ 0,

where the inequalities in the last line express the implicit requirement that the num-

ber of each server has to be nonnegative. Such inequalities are necessary to prevent

a nonsensical solution, and they are distinguished from the other constraints in that

they determine the sign of the variables. Solving optimization problems that have

the above general form is known as linear programming, which is the topic we

study in this chapter.

Linear programming encompasses a broad subclass of optimization problems,

including the shortest-path problem and maximum flow, as well as fundamental

applications from the realms of military, science, and business. Algorithms that

solve linear programs (often abbreviated as LP) have been extensively studied in

the last century. Our goal in this chapter is to understand one of these algorithms,

which is still in use, called the simplex method.

Translating Problems into Linear Programs

In general, there are three steps for turning an optimization problem into a linear

program, assuming such a formulation is possible:

1. Determining the variables of the problem.

2. Finding the quantity to optimize, and write it in terms of the variables.

3. Finding all the constraints on the variables and writing equations or inequal-

ities to express these constraints.

In addition, in defining the constraints, we need to be sure to include any implicit

constraints describing the range of values the variables can take and to make sure

all the equations are linear, as in the above example. In this chapter, we discuss

how to create such formulations of optimization problems.

Once we have such a formulation, we then should solve the resulting linear

program, and there are several software packages available for doing this that are

based on various efficient algorithms. In this chapter, we focus on a classic algo-

rithm for solving linear programs, which is known as the simplex method. We also

discuss an important topic known as duality.
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26.1 Formulating the Problem

Standard Form

Recall that a function, f , is a linear function in the variables, x1, x2, . . . , xn, if it

has the following form:

f(x1, x2, . . . , xn) = a1x1 + a2x2 + · · · + anxn =
n

∑

i=1

aixi,

for some real numbers, a1, a2, . . . , an, which are called coefficients or weights.

A linear program in standard form is an optimization problem with the fol-

lowing form:

maximize: z =
∑

i∈V

cixi

subject to:
∑

j∈V

aijxj ≤ bi for i ∈ C

xi ≥ 0 for i ∈ V

where V indexes over the set of variables and C indexes over the set of constraints.

The xi’s are variables, whereas all other symbols represent fixed real numbers.

The function to maximize is called the objective function, and the inequalities are

called constraints. In particular, the inequalities xi ≥ 0 are called nonnegativity

constraints. This program is linear because both the objective and the constraints

are linear functions of the variables, where an inequality is linear if there is a linear

function on one side and a constant on the other side of the inequality.

As an example, the earlier linear program is reproduced below. Notice that it

fits the standard form. To make this fact more explicit, we rewrite it in gray using

the notation from the definition:

maximize: z = 1000x1 + 2000x2 z = c1x1 + c2x2

subject to: 400x1 + 1600x2 ≤ 36800 a11x1 + a12x2≤ b1

2x1 + x2 ≤ 44 a21x1 + a22x2≤ b2

300x1 + 500x2 ≤ 12200 a31x1 + a32x2≤ b3

x1, x2 ≥ 0 x1, x2≥ 0.

There are two variables and three constraints, so V = {1, 2} and C = {1, 2, 3}.

Linear programs also come in several variants of the standard form. For in-

stance, we may want to minimize rather than maximize the objective function, the

inequalities in the constraints may be expressed in terms of “greater than or equal

to,” or the constraints might be better expressed as equalities. Fortunately, these

variants can easily be made to fit the standard form. The following table describes
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how this could be done.

The form . . . can also be written as . . .

minimize f(x1, . . . , xn) maximize −f(x1, . . . , xn)
f(x1, . . . , xn) ≥ y −f(x1, . . . , xn) ≤ −y

f(x1, . . . , xn) = y
f(x1, . . . , xn) ≤ y
f(x1, . . . , xn) ≥ y

For example, we can use the last two rules to rewrite 3x1 − 2x2 = 5 into an

equivalent form consisting of the two inequalities

3x1 − 2x2 ≤ 5,
−3x1 + 2x2 ≤ −5.

Matrix Notation

A linear function can be expressed as a dot product:
n

∑

i=1

aixi = �a · �x,
�a = (a1, . . . , an),
�x = (x1, . . . , xn).

Notice that �a is a vector of numbers while �x is a vector of variables. Using dot

products, we can express the standard form more compactly:

maximize: �c · �x
subject to: �a1 · �x ≤ b1

�a2 · �x ≤ b2

...

�am · �x ≤ bm.

In fact, we can express it even more compactly, by letting A be the matrix where

the ith row is vector �ai. In other words, A is the m × n matrix whose ijth entry is

aij . Also let�b be the vector with entries bi. If we extend the meaning of the symbol

≤ to row-wise inequality, we can have a more succinct description of standard form

as follows:

maximize: �c · �x
subject to: A�x ≤ �b.

For example, the inequalities

2x + z ≤ 5
x − 4y − 3z ≤ 1

can be written as

(2, 0, 1) · (x, y, z) ≤ 5
(1,−4,−3) · (x, y, z) ≤ 1

or

(

2 0 1
1 −4 −3

)

⎛

⎝

x
y
z

⎞

⎠ ≤
(

5
1

)

.
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The Geometry of Linear Programs

To understand a linear program, it helps to look at the problem from a geometric

point of view. For simplicity, let us restrict ourselves to the two-dimensional case

for the time being. In this case, each inequality constraint describes a half-plane,

expressed as an infinite region to one side of a line. So a point that is inside all of

these half-planes is a point that satisfies all the constraints. We call such a point

a feasible solution. Now intersections of half-planes have the shape of a convex

polygon (Section 22.2). So the set of all feasible solutions is a convex polygon. We

call this set the feasible region. For example, Figure 26.1 shows the feasible region

of the linear program from the web server example.

23

22 x 1

x 2

(14,16)

(4, 22)

Figure 26.1: A feasible region is the intersection of half-spaces.

A region is convex if any two points in the region can be joined by a line

segment entirely in the region (see Figure 26.2). Intuitively, if a two-dimensional

shape is convex, then a person walking on its boundary, assuming it has one, would

always be making left turns, or always right turns. (See, also, Section 22.2.)

(a) (b)

Figure 26.2: (a) In a convex set, any segment line joining two points inside the set

is also inside the set. (b) In a non-convex set, there are segments joining two points

in the set that are not entirely in the set.
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In general, linear programs have a geometry in d dimensions where d is the

number of variables. The geometric intuition is the same as in the plane but the

shapes are more complex and the terminology is different. Inequality constraints

in d dimensions are represented by half-spaces instead of half-planes, and their

intersection forms a convex polytope instead of a convex polygon. For instance,

a three-dimensional linear program could have a feasible region in the shape of a

cube, pyramid, soccer ball, or any other three-dimensional convex shape with flat

sides defining its boundary.

It is not enough to find just any feasible solution, of course. We are interested

in one that optimizes the objective function. We refer to this feasible solution an

optimal solution. In the web server example, for instance, the set of points that

produce a particular value, c, of the objective function is given by the equation

c = 1000x1 + 2000x2,

which is represented by a line. Such lines with varying values of c are all parallel,

and we are interested in the one that maximizes c while still containing a feasible

solution somewhere on the line. (See Figure 26.3.)

Referring to Figure 26.3, note that the slope of a line for the above objective

function is always −1/2, regardless of the value of c. So we can imagine that, as

c increases, the line sweeps the plane from the bottom left to the top right, staying

parallel to itself. An optimal solution must be contained within the feasible region,

which is represented by the gray region, and it must have the highest possible ob-

jective value. So the optimal solution is the point in the feasible region which is

last hit by the sweeping line as it sweeps up and to the right. In this case, this point

is the intersection of the lines representing the budget and power constraints,

400x1 + 1600x2 = 36800

300x1 + 500x2 = 12200.

23

22

(4, 22)

(14,16)

c
=

4400

c
=

3600

c
=

2400

x 1

x 2

Figure 26.3: An example two-dimensional feasible region and objective function,

c = 1000x1 + 2000x2. Values of the objective are represented by parallel lines.
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By solving the above system of two equations in two variables, we see that the

optimal solution occurs when x1 = 4 and x2 = 22. This example illustrates a

principle that applies even to linear programs in higher dimensions—namely, that,

because the feasible region is a convex polytope, an optimal solution, if one exists,

always occurs on the boundary.

An optimal solution may not always be unique, however, such as when we

modify the coefficients of the objective function in our example to

maximize 1500x1 + 2500x2.

(See Figure 26.4(a).) It is also possible that the solution does not exist at all. For

example, this case occurs when the feasible region is unbounded and the objective

function tends to +∞ as we move along a ray contained in the feasible region. (See

Figure 26.4(b).)

23

22

(4, 22)

(14,16)

x 1

x 2

c
=

5 7 5 0
c
=

4 7 5 0

c
=

3 2 5 0

x 1

20

20

c
=

1
0
5

c
=
8

0

c
=

140

x 2

(a) (b)

Figure 26.4: A linear program can have (a) many optimal solutions or (b) no optimal

solution at all.

Finally, a linear program may not have an optimal solution simply because it

has no feasible solution. This situation occurs when the constraints are so restrictive

that no assignment to the variables can satisfy every constraint. Geometrically, this

is the situation in which the intersection of all the half-spaces is empty.

Therefore, one algorithm to solve a linear program that has at least one optimal

solution is to find all the vertices of the feasible region, and evaluate the objec-

tive function at these points. The optimal solution will be the point or points with

highest objective value. This method is not particularly efficient, however, because

there can be exponentially many vertices to evaluate. A better approach consists

of starting at one vertex and, over several iterations, moving to a neighboring ver-

tex with an increasingly better objective value. Thus, we can find a path on the

boundary of the feasible region that starts at any vertex and ends at an optimal one.

This alternative algorithm is called the simplex method, which is the algorithm we

discuss next.
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26.2 The Simplex Method

In this section, we describe the simplex method, which is an algorithm for solv-

ing linear programs that follows a path through the vertices of the feasible region

that increases the objective function in a greedy fashion. Although the worst-case

runtime for this algorithm is exponential, in practice the algorithm usually finishes

quickly.

26.2.1 Slack Form

To solve a linear program using the simplex method, we must first rewrite the prob-

lem in a format known as slack form. To convert a linear program from standard

form into slack form, we rewrite each of the inequality constraints as an equiva-

lent equality constraint. This is done with the introduction of new variables, called

slack variables, which are nonnegative and measure the difference in the original

inequality. For example, to rewrite the inequality 2x − 5y ≤ 28 in slack form, we

could introduce a slack variable, s, with the constraints, s = 28 − (2x − 5y) and

s ≥ 0. Intuitively, variable s measures the “slack” in the inequality, that is, the

amount between the lesser and greater quantities in the inequality. We perform this

step for each inequality in the standard form, introducing a slack variable for each

such inequality.

Formally, we say that linear program is in slack form if we seek to maximize a

linear objective, z, subject to constraints that are either equality constraints involv-

ing a slack variable or are nonnegativity constraints, as follows:

maximize: z = c∗ +
∑

j∈F

cjxj

subject to: xi = bi −
∑

j∈F

aijxj , for i ∈ B

xi ≥ 0 for 1 ≤ i ≤ m + n.

The sets B and F partition the xi variables into basic variables and free variables,

respectively. That is, each equality constraint has a basic (slack) variable on the

left-hand side and only free variables on the right-hand side. Thus, free variables

only appear on the left-hand side of nonnegativity constraints. Taken together, the

aij coefficients form a m × n matrix, A, where n = |F | is the number of variables

in the standard form, and m = |B| is the number of constraints in the standard

form. Incidentally, the minus sign in the equality constraints is needed so that the

matrix A is the same in the slack form and standard form.
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Example 26.1: Below we convert the linear program in standard form (left) into
a slack form (right). In this particular slack form, the basic variables are slack
variables, but this is not always the case.

maximize: z = x1 + 2x2

subject to: −3x1 + 2x2 ≤ 3

x1 + x2 ≤ 2

x1 − x2 ≤ 1

x1, x2 ≥ 0

maximize: z = x1 + 2x2

subject to: x3 = 3 + 3x1 − 2x2

x4 = 2 − x1 − x2

x5 = 1 − x1 + x2

x1, x2, x3, x4, x5 ≥ 0

In this slack form, the free variables have indices F = {1, 2} and the basic
variables have indices B = {3, 4, 5}.

We are interested in the basic solution of the slack form, which means we set

all the free variables to zero and let the equality constraints determine the values

of the basic variables. In the above example, the basic solution is, x1 = x2 = 0,

x3 = 3, x4 = 2, and x5 = 1, or written in vector notation �x = (0, 0, 3, 2, 1), and

the objective function has value z = c∗ = 0. In this case, the basic solution is a

feasible solution, but this need not be the case in general.

The simplex method works by rewriting the slack form until a basic solution

becomes an optimal solution. The operation we use to rewrite the slack form is

called a pivot, which takes a free variable and a basic variable and interchanges

their roles by rewriting the equality constraints and objective function. Pivoting two

variables produces an equivalent slack form, meaning that it has the same feasible

region and that the objective function has the same values in the feasible region.

Example 26.2: In this example, we perform a pivot where the free variable x1

becomes basic and the basic variable x5 becomes free. We perform this pivot by
rewriting the equality constraint with x5 on the left-hand side so that it has x1 on
the left-hand side. Then, we substitute this new equality constraint for x1 in the
old objective function and equality constraints to obtain a new objective function
and new equality constraints involving only the free variables, x2 and x5, on the
right-hand sides.

maximize: z = x1 + 2x2

subject to: x3 = 3 + 3x1 − 2x2

x4 = 2 − x1 − x2

x5 = 1 − x1 + x2

x1, x2, x3, x4, x5 ≥ 0

maximize: z = 1 + 3x2 − x5

subject to: x3 = 6 + x2 − x5

x4 = 2 − 2x2 + x5

x1 = 1 + x2 − x5

x1, x2, x3, x4, x5 ≥ 0.

The basic solution of the new slack form is (1, 0, 6, 2, 0) and the objective value
is 1. So, as a result of the pivot, we have increased the objective value from 0 to
1. Geometrically, we have started from the vertex (0, 0), where the inequalities
x1, x2 ≥ 0 are tight (that is, they are satisfied by equality with the right-hand side),
and we have moved to the vertex (1, 0) where the inequalities x2, x5 ≥ 0 are tight.
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The simplex method describes the procedure for performing pivots that increase

the objective value to the optimal objective value. Geometrically, pivots move from

a vertex of the feasible region to a neighbor that increases the objective function the

most. Thus, this approach is an application of the greedy method (Chapter 10).

Lemma 26.3: The slack form of a LP is uniquely determined by the set of free
variables.

Proof: Suppose the two slack forms below are equivalent slack forms

maximize: z = c∗ +
∑

j∈F

cjxj

subject to: xi = bi −
∑

j∈F

aijxj for i ∈ B

xi ≥ 0 for 1 ≤ i ≤ m + n

maximize: z = c′
∗
+

∑

j∈F

c′jxj

subject to: xi = b′i −
∑

j∈F

a′ijxj for i ∈ B

xi ≥ 0 for 1 ≤ i ≤ m + n

We aim to show that they are in fact identical, i.e., c∗ = c′
∗
, cj = c′j for all

j ∈ F , bi = b′i for all i ∈ B, and aij = a′ij for all i ∈ B and j ∈ F . Consider the

equality

0 =

⎛

⎝c∗ +
∑

j∈F

cjxj

⎞

⎠ −

⎛

⎝c′
∗
+

∑

j∈F

c′jxj

⎞

⎠ = (c∗ − c′
∗
) +

∑

j∈F

(cj − c′j)xj .

This equation must hold for all feasible (nonnegative) values of the xj . When

xj = 0 for all j ∈ F , we get 0 = c∗ − c′
∗
, so we must have that c∗ = c′

∗
. Fix r ∈ F

then let xr = 1 and xj = 0 for j ∈ F \{r}. This produces the equality 0 = cr−c′r,

which implies cr = c′r. Since r was arbitrary, we have that cj = c′j for all j ∈ F .

The remainder of the equalities are proved similarly, and left to Exercise C-

26.14.

Earlier we said we would assume that the basic solution was feasible, but what

do we do when this is not the case? If we know a vertex on the feasible region,

then we can find which of n inequalities are tight there and pivot the associated

variable so that they are free variables. Exercise C-26.5 asks you to show that the

basic solution is feasible in this new slack form. This does not however help us to

find a vertex on the feasible region, however, which will wait until we develop the

details for the simplex method.
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26.2.2 An Extended Example

In this section, we follow the approach of the simplex method to optimize the fol-

lowing linear program whose feasibly region is drawn to the right. The strategy

will be to perform a sequence of pivot operations, which in the end will yield a

slack form that is readily optimized.

maximize: z = 4x1 + x2

subject to: x2 ≤ 6

x1 + x2 ≤ 8

x1 ≤ 4

x1 − x2 ≤ 2

x1, x2 ≥ 0

2 4

2

4

6

First, we rewrite the linear program into the initial slack form, introducing the

slack variables x3, x4, x5 and x6.

maximize: z = 4x1 + x2

subject to: x3 = 6 − x2

x4 = 8 − x1 − x2

x5 = 4 − x1

x6 = 2 − x1 + x2

x1, x2, x3, x4, x5, x6 ≥ 0

Free Variables: F = {1, 2}
Basic Variables: B = {3, 4, 5, 6}
Basic Solution: (0, 0, 6, 8, 4, 2)
Objective Value: c∗ = 0

Next, we look at the objective function and notice that increasing either x1 or

x2 will increase the objective value. We choose to raise the value of x1 as it has the

largest coefficient. This greedy strategy does not necessarily improve runtime, by

the way, but it is nevertheless often a useful choice in practice. While keeping x2

fixed at zero, we increase x1 as far as possible. The nonnegativity constraints of the

basic variables impose the constraints x1 ≤ ∞ from x3, x1 ≤ 8 from x4, x1 ≤ 4
from x5 and x1 ≤ 2 from x6. The tightest of these constraints is x1 ≤ 2. So we

pivot x1 and x6, setting x1 = 2 and x6 = 0 in the basic solution. This produces a

new but equivalent slack form.
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maximize: z = 8 + 5x2 − 4x6

subject to: x1 = 2 + x2 − x6

x3 = 6 − x2

x4 = 6 − 2x2 + x6

x5 = 2 − x2 + x6

x1, x2, x3, x4, x5, x6 ≥ 0

Free Variables: F = {2, 6}
Basic Variables: B = {1, 3, 4, 5}
Basic Solution: (2, 0, 6, 6, 2, 0)
Objective Value: c∗ = 8

Since the coefficient on x6 is negative, raising it from zero will only decrease

the objective function. For this reason, we keep x6 fixed at zero and raise x2 until

we hit the first constraint. The constraints on x2 are: x2 ≤ ∞, x2 ≤ 6, x2 ≤ 3, and

x2 ≤ 2. The tightest of these constraints is x2 ≤ 2 coming from the basic variable

x5. So we set x2 = 2 and x5 = 0 by pivoting x2 and x5. This yields a new slack

form.

maximize: z = 18 − 5x5 + x6

subject to: x1 = 4 − x5

x2 = 2 − x5 + x6

x3 = 4 + +x5 − x6

x4 = 2 + 2x5 − x6

x1, x2, x3, x4, x5, x6 ≥ 0

Free Variables: F = {5, 6}
Basic Variables: B = {1, 2, 3, 4}
Basic Solution: (4, 2, 4, 2, 0, 0)
Objective Value: c∗ = 18

In this slack form, the coefficient of x5 is negative. So we keep x5 fixed at zero

and increase x6. The tightest constraint is x6 ≤ 2 coming from the basic variable

x4. So we pivot x4 and x6, yielding the next slack form.

maximize: z = 20 − 3x5 − x4

subject to: x1 = 4 − x5

x2 = 4 − x4 + x5

x3 = 2 + x4 − x5

x6 = 2 + 2x5 − x4

x1, x2, x3, x4, x5, x6 ≥ 0

Free Variables: F = {4, 5}
Basic Variables: B = {1, 2, 3, 6}
Basic Solution: (4, 4, 2, 0, 0, 2)
Objective Value: c∗ = 20

Now something interesting has happened! Both of the variables in the objective

function have negative coefficients, so increasing either of them would decrease the

objective function. So we conclude that we must be at the optimum and stop. From

the basic solution we see that x1 = 4, x2 = 4 and c∗ = 20, which is the solution to

our original problem.
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26.2.3 The Simplex Algorithm

We formalize the strategy used in the previous example into Algorithm 26.5, which

is commonly referred to as the simplex method. This version of the algorithm

assumes it is given as input a slack form in which the basic solution is feasible.

Earlier we showed how to produce such a slack form if we know a vertex of the

feasible region, and in Exercise C-26.6 we explore how to find such a vertex.

SimplexMethod(A, b, c, c∗, F, B) :

while there exists j ∈ F with cj > 0 do

r ← arg maxj∈F cj

for i ∈ B do

ki ← ( if air 	= 0 then − bi/air else ∞)

s ← arg mini∈B ki

if ks = ∞ then

return unbounded exception

else

Pivot xr and xs.

return (A, b, c, c∗, F, B)

Algorithm 26.5: The simplex method. We assume the input is given in slack form

and that the basic solution is feasible.

Analysis of the Simplex Algorithm

To analyze the running time of the simplex method, we notice that each iteration

of the loop considers a different slack form of the original problem. If a slack form

appears more than once while running the simplex method, then the algorithm will

cycle. Since there are only
(

n+m
n

)

different slack forms, one for each choice of F ,

we know that the algorithm will either halt in
(

n+m
n

)

steps or it will cycle. We can

avoid cycling, however, by having an appropriate rule for choosing among optimal

pivots that don’t actually change the value of the objective function, which is a

phenomenon known as degeneracy. In practice, however, the simplex algorithm

will often halt in polynomial time in any case.

Since the simplex algorithm only works for inputs whose basic solution is feasi-

ble, we need to take into account the amount of time required to put the problem in

this form. In Exercise C-26.6, we explore how to find a vertex of the feasible region

by optimizing a slack form where the basic solution is feasible, taking
(

n+m
n

)

time.

In addition, in Exercise C-26.5, we consider how to transform a slack form into

a slack form in which the basic solution is feasible given a vertex on the feasible

region in time O(mn). Thus, the simplex method will optimize a linear program

in at most O(
(

n+m
n

)

) time.



26.2. The Simplex Method 745

Example 26.4: Consider the following linear program, written in standard form:

maximize: z = x1 + 2x2

subject to: − x1 + x2 ≤ 3

x1 + 3x2 ≤ 13

x1 − x2 ≤ 1

To solve this linear program using the simplex method, we first we rewrite the linear
program in slack form, introducing the slack variables, x3, x4 and x5.

maximize: z = x1 + 2x2

subject to: x3 = 3 + x1 − x2

x4 = 13 − x1 − 3x2

x5 = 1 − x1 + x2

We then choose to increase x2, as it has the largest coefficient in the objective
function. The most restrictive constraint is given by x3. So we pivot x2 and x3,
yielding the following new slack form with objective value, c∗ = 6.

maximize: z = 6 + 3x1 − 2x3

subject to: x2 = 3 + x1 − x3

x4 = 4 − 4x1 + 3x3

x5 = 4 − x3

Next, we increase x1, as it has the largest coefficient in the objective function. The
most restrictive constraint is x4. So we pivot x1 and x4, which yields the following
slack form with objective value, c∗ = 9.

maximize: z = 9 + 0.25x3 − 0.25x4

subject to: x1 = 1 + 0.75x3 − 0.25x4

x2 = 4 − 0.25x3 − 0.25x4

x5 = 4 − x3

This time, we increase x3. Its most restrictive constraint comes from x5. So we
pivot x3 with x5. We get the new slack form below, with objective value, c∗ = 10.

maximize: z = 10 − 0.25x4 − 0.25x5

subject to: x1 = 4 − 0.25x4 − 0.75x5

x2 = 3 − 0.25x4 + 0.25x5

x3 = 4 − x5

Now that all the coefficients of the objective function are negative, we see that the
optimal value for this linear program is 10, with x1 = 4 and x2 = 3.
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26.3 Duality

To prove that Algorithm 26.5 does indeed provide the correct output, we must dis-

cuss a linear program related to the original problem called the dual.

Suppose that our input LP has the standard form:

maximize: z =
∑

j∈V

cjxj

subject to:
∑

j∈V

aijxj ≤ bi for i ∈ C

xj ≥ 0 for j ∈ V

It can be put into slack form as follows:

maximize: z =
∑

j∈F

cjxj

subject to: xi = bi −
∑

j∈F

aijxj for i ∈ B

xj ≥ 0 for j ∈ F ∪ B

Therefore, C = B and V = F . Note that this only holds because we did

the obvious transformation between the two forms. There are many more slack

forms equivalent to the original standard form, such as the slack forms produced

at each iteration of Algorithm 26.5, whose indexing sets B and F do not directly

correspond to C and V . Nevertheless, for this section, we assume that whenever

we transform the standard form into slack form, we do the obvious transformation.

So we can assume that C = B and V = F .

Given this initial LP, the dual LP is a minimization problem which interchanges

the roles of�b and �c and the roles of B and F . It also introduces new variables yi:

minimize: z =
∑

i∈B

biyi

subject to:
∑

i∈B

aijyi ≥ cj for j ∈ F

yi ≥ 0 for i ∈ B

When considering the original problem in relationship to its dual, we refer to

the original as the primal LP. Note the symmetry between the primal and dual LPs

written in matrix form:

primal:

maximize: z = �c · �x
subject to: A�x ≤ �b

�x ≥ �0

dual:
minimize: z = �b · �y
subject to: At�y ≥ �c

�y ≥ �0
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When going from the standard to the slack form, we extend the set of original

variables xi (now called free) to a bigger set to include basic variables. Still, for

this section, let us use �x to refer to the original variables only, which are indexed

by F .

Example 26.5: Below is a primal LP written in standard form and its dual.

maximize: z = x1 + 2x2

subject to: −3x1 + 2x2 ≤ 3

x1 + x2 ≤ 2

x1 − x2 ≤ 1

x1, x2 ≥ 0

minimize: z = 3y1 + 2y2 + y3

subject to: −3y1 + y2 + y3 ≥ 1

2y1 + y2 − y3 ≥ 2

y1, y2, y3 ≥ 0

Note that the dual is no longer in standard form, because of the inequality con-
straints. It can of course be easily converted (Exercise R-26.7).

As we shall see, the solutions to the primal and dual problems are closely re-

lated. Why is that the case? Let’s go back to the web server example.

Example 26.6: Recall the primal LP representing the web server problem.

maximize: z = 1000x1 + 2000x2

subject to: 400x1 + 1600x2 ≤ 36800

2x1 + x2 ≤ 44

300x1 + 500x2 ≤ 12200

x1, x2 ≥ 0

The dual problem is:

minimize: z = 36800y1 + 44y2+12200y3

subject to: 400y1 + 2y2 + 300y3 ≥ 1000

1600y1 + y2 + 500y3 ≥ 2000

y1, y2, y3 ≥ 0

There is a way to interpret this dual problem. Suppose a computer manufacturer
claims that it can cater to the web server company’s needs, and that, by doing so, it
can offer a set of web servers that will outperform the two types of servers the web
server company had planned on using, while staying within its resource limits.

To do so, the computer manufacturer must assess the number of hits/min each
resource can potentially produce. To outperform the first type of server, it must
build a web server that can handle at least 1000 hits/min if it costs $400, occupies
two shelves and uses 300W of power. This constraint corresponds to the first in-
equality of the dual LP. A similar explanation handles the case of the second type
of servers.

The variables in this inequality represent the number of hits/min each unit of
resource will contribute. For example, we can think of y2 as the value of a single
shelf measured in hits/mins, because a resource that contributes more hits/min is
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likely to increase the price of the computer (this is obviously up for debate, but
let us assume this is true to simplify things). Now the computer manufacturer
is offering its services for profit. So it will try to minimize its own production
costs given the amount of resources available. This production cost is the quantity
described by the objective function of the dual LP.

The minimum number of hits/min that the computer manufacturer can get away
with offering is equal to the maximum number of hits/min its client can achieve by
only using the two types of servers it had at its disposal.

Lemma 26.7: Let �x′ be a feasible solution to the primal LP (A,�b,�c, c∗, F, B) and

let �y′ be a feasible solution to the dual LP. If �c ·�x′ = �b ·�y′, then �x′ and �y′ are optimal
for their respective problems.

Proof: Any two solutions �x and �y that are feasible in the primal and dual prob-

lems respectively give us that

cj ≤
∑

i∈B

aijyi and
∑

j∈F

aijxj ≤ bi.

Using these inequalities one at a time, we see that
∑

j∈F

cjxj ≤
∑

j∈F

∑

i∈B

aijyixj ≤
∑

i∈B

biyi.

So just by being feasible, we have �c · �x ≤ �b · �y. In particular, �c · �x ≤ �b · �y′, which

means that the primal objective function cannot be larger than �b · �y′ if we stay in

the feasible region. Since this objective function achieves the value�b · �y′ at �x′, this

means �x′ is optimal for the primal problem. A similar argument shows that �y′ is

optimal for the dual problem.

We now proceed to demonstrate the correctness of Algorithm 26.5.

Theorem 26.8: Suppose that on input LP (A,�b,�c, 0, F, B), Algorithm 26.5 re-
turns the LP (A′, �x′,�c′, c∗, F

′, B′), then �x′ is optimal for the input LP.

Proof: We show that the vector

�y = (yi, i ∈ B) defined by yi =

{

−c′i i ∈ F ′ ∩ B

0 i ∈ B′ ∩ B

is feasible for the dual LP and �c · �x′ = �b · �y and apply the previous lemma.

The input and output LPs are equivalent, so they have the same objective func-

tion:
∑

j∈F

cjxj = c∗ +
∑

i∈F ′

c′ixi (26.1)

= c∗ +
∑

i∈F ′∩F

c′ixi +
∑

i∈F ′∩B

c′ixi. (26.2)
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The split sum comes from the fact that F ′ ⊆ F ∪ B. Now the last sum can be

rewritten as

∑

i∈F ′∩B

−yi

⎛

⎝bi −
∑

j∈F

aijxj

⎞

⎠ ,

by using the definitions of yi and rewriting the slack variables, xi, such that i ∈
F ′ ∩ B ⊆ B, in terms of the free variables, xk, where k ∈ F . So we get

∑

j∈F

cjxj =

(

c∗ −
∑

i∈B

yibi

)

+
∑

j∈F

(

c′j +
∑

i∈B

aijyi

)

xj ,

where we have substituted the previous expression into the one before, rearranged

the order of the terms, and summed over B and F instead of F ′ ∩ B and F ′ ∩ F ,

because c′j = 0 for all j 	∈ F ′. Setting the coefficients on the left-hand side and

right-hand side equal for each variable xj as well as for the constant term (see

Exercise C-26.15), we have that

cj = c′j +
∑

i∈B

aijyi, j ∈ F (26.3)

c∗ =
∑

i∈B

yibi. (26.4)

Note that because c′j ≤ 0 for any j (this is the terminating condition of Algo-

rithm 26.5), Equation 26.3 becomes

cj ≤
∑

i∈B

aijyi.

So �y is feasible for the dual problem. Also note that if we plug �x′ into Equa-

tion 26.1,

∑

j∈F

cjx
′

j = c∗ +
∑

i∈F ′

c′ix
′

i.

But since x′

i = 0 for i ∈ F ′, we have that �c·�x′ = c∗. Combined with Equation 26.4,

this shows that �c · �x′ = �b · �y.

Thus, we have shown that (1) �y is feasible and that (2) �c · �x′ = �b · �y. These are

the conditions needed for Lemma 26.7, which says that �x′ is optimal.
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26.4 Applications of Linear Programming

Because linear programming has such a general formulation, it can be used to solve

other algorithmic problems. In particular, if a problem can be expressed as a linear

program, then we can design an algorithm to solve this problem by giving this linear

program as the input to a linear program solver, such as the simplex method. In this

section, we look at three familiar problems that can be reduced to linear programs.

Shortest Paths

In the shortest-path problem, for a specific source, s, and target, t, we are given a

graph whose vertices represent locations, such that each edge, (u, v), has a weight,

d(u, v), that represents the distance between two locations, u and v. The goal is to

find the shortest path between the source, s, and target, t.

We can formulate a linear program for this problem based on the setup and

termination conditions for the Bellman-Ford algorithm (Section 14.3). We define

for every vertex, v, a variable, dv, which should represent the shortest distance

between s and v. The initialization, ds = 0, now becomes one of our constraints. To

pinpoint the correct value for dt, we use the termination condition of the Bellman-

Ford algorithm—namely, that the triangle inequality holds for every edge. Recall

that this is the condition that states that the shortest path from s to v should be no

longer than the shortest path from s to any neighbor u of v followed by the path

from u to v. We want dt to be the largest value that satisfies these conditions, the

same way the algorithm initializes dt = ∞ and progressively decreases its value

until all variables meet the termination condition. Thus, the corresponding linear

program is the following:

maximize: dt

subject to: ds = 0

dv ≤ du + d(u, v), for every edge, (u, v)

This is, of course, the variant of the shortest-paths problem that has a single

source and single target. In the exercises, we explore modifications to this LP to

accommodate generalizations of the shortest-path problem.

Network Flow

Recall from Chapter 16 that a flow network is a connected directed graph with a

source and a sink, and in which each edge, e, has nonnegative weights called its

capacity, c(e).
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A flow, f , is a new set of nonnegative edge weights that satisfies the following

rules:

• The Capacity Rule: The flow through an edge must be less than the capacity

of that edge

• The Conservation Rule: With the exception of the source and the sink, the

flow into a vertex must equal the flow out of it.

The maximum flow problem is to find the maximum flow size, that is, the maximum

amount of flow out of the source that satisfies the above two rules. This can be

expressed with a linear program in which the variables are the edge weights, f(e),
the objective function is the flow size, and the constraints are given by the two rules

making up the definition of a valid flow:

maximize:
∑

e∈E+(s)

f(e) where s is the source

subject to: 0 ≤ f(e) ≤ c(e) for all edges e
∑

e∈E−(v)

f(e) =
∑

e∈E+(v)

f(e)
for all vertices v except for the

source and the sink

Here, E+(v) and E−(v) represent the set of incoming and outgoing edges of a

vertex v respectively. Note that if the capacities of a flow network are integers, the

simplex algorithm will produce a solution with integer edge weights.

Maximum Matching

Suppose five children have gone to a dog shelter to find a new pet. As it happens,

there are exactly five dogs up for adoption. Each child has a preference for certain

breeds, whereas each dog has a preference for children of a certain temperament.

Figure 26.6 shows a graph in which a child and a dog who like each other are

connected by an edge.

Alonzo

Edgar

Donald

Alan

John

Max

Buster

Sam

Rocky

Duke

Figure 26.6: An edge connects a child and a dog who like each other.
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Is there a pairing scheme in which all children and dogs will be happily matched?

In other words, is there a maximum matching for the graph in Figure 26.6 equal to

the number of children? In general, we can answer maximum matching questions

by setting up a flow network, as done in Section 16.3, and then solving this problem

using the LP given above. We create two additional vertices, a source s and a sink

t. Then, we add a directed edge from the source to every child, and also an edge

from every dog to the sink. Finally, we connect every child to a dog if they both

like each other. We get the directed graph shown in Figure 26.7.

Alonzo

Edgar

Donald

Alan

John

Max

Buster

Sam

Rocky

Duke

s t

Figure 26.7: This flow network solves the bipartite matching problem.

Next, we assign a flow of 1 to each edge. Then there is a perfect matching in

the original graph if and only if the maximum flow is equal to 5. Moreover, if we

solve the flow network problem by converting it into an LP as we did earlier, all

flows will be integers. This means that each edge can only have a flow of 0 or 1, so

that we can interpret 0 as “do not pair them up” and 1 as “pair them up.” Thus, we

can solving the maximum matching problem using a linear program solver.
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26.5 Exercises

Reinforcement

R-26.1 Recall at the beginning of the chapter we gave a linear program to help a web
server company decide what server models it should purchase. Suppose that the
standard server model has been replaced by a new “green” server model, which
only requires 200W of power, costs 600, takes up one shelf in the server rack,
and can handle 800 hits/min. Give a new linear program that takes into account
the availability of this new model.

R-26.2 Draw the two-dimensional feasible region of the LP from Exercise R-26.1.

R-26.3 Suppose that instead of maximizing hits per minute, constraints, a web server
company wants to minimize cost while maintaining a rack of standard and cutting-
edge servers that can handle at least 15,000 hits per minute. Also, for the sake
of redundancy, the company wants to maintain at least 10 servers in their rack.
Based on these constraints, give a linear program to find the optimal server con-
figuration. Draw the feasible region, and solve the LP geometrically.

R-26.4 In the following linear program, the objective function has a parameter, α. What
values of α result in a program with no unique solution?

maximize: z = αx1 + x2

subject to: 3x1 + 5x2 ≤ 77

7x1 + 2x2 ≤ 56

x1, x2 ≥ 0.

R-26.5 Solve the linear program of Exercise R-26.4, for α = 1, using the simplex
method. Show the result of each pivot.

R-26.6 For each of the regions shown in Figure 26.8, give an LP for which that region is
the feasible region, or explain why no such linear program exists.

x 2

x 12 4 6

2

4

6

x 2

x 12 4 6

2

4

6

(a) (b)

x 2

x 12 4 6

2

4

6

(c)

Figure 26.8: Different plausible feasible regions.
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R-26.7 Convert the following linear program into standard form:

minimize: z = 3y1 + 2y2 + y3

subject to: −3y1 + y2 + y3 ≥ 1

2y1 + y2 − y3 ≥ 2

y1, y2, y3 ≥ 0

R-26.8 Recall the LP for the dual of the web server problem from Example 26.6:

minimize: z = 36800y1 + 44y2+12200y3

subject to: 400y1 + 2y2 + 300y3 ≥ 1000

1600y1 + y2 + 500y3 ≥ 2000

y1, y2, y3 ≥ 0

Convert this linear program first into standard, and then slack form.

R-26.9 Give a set of linear programming constraints that result in the feasible region
shown in Figure 26.9.

(0 , 9)

(8 , 0)

(3 , 9)

(8 , 6)

x

y

Figure 26.9: A feasible region.

R-26.10 For each vertex, (3, 9) and (8, 6), of the feasible region shown in Figure 26.9,
give an objective function that has that vertex as the optimal solution.

R-26.11 Give an objective function for the feasible region shown in Figure 26.9, such that
there are an infinite number of optimal solutions, none of which have x = 0 or
y = 0. What is the value of the objective function for these solutions?

R-26.12 Formulate the dual of the linear program for the maximum flow problem.

R-26.13 What is the dual of the following linear program?

maximize: z = x1 + 2x2

subject to: x1 + x2 ≤ 5

6x1 − 3x2 ≤ 3

5x1 ≤ 24

6x2 ≤ 9

x1, x2 ≥ 0
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Creativity

C-26.1 Prove that there exists a linear program in two variables with exactly one feasible
solution.

C-26.2 Prove that if there exists more than one optimal solution to a linear program, then
there must be infinitely many optimal solutions.

C-26.3 Prove that the set of feasible solutions to a linear program with a nonempty fea-
sible region is convex.

C-26.4 Give a linear program in three variables for which the feasible region is a tetra-
hedron.

C-26.5 When the simplex method was introduced, we assumed that the basic solution
of the slack form was a feasible solution. Describe an algorithm that given an
arbitrary slack form and a vertex on the feasible region, makes transformations
to the slack form to guarantee that the basic solution is feasible.

C-26.6 Given a linear program in slack form such that the basic solution is feasible,
give an algorithm to find a vertex of the feasible region by optimizing the slack
form.

C-26.7 If P is a linear program, let P ∗ denote the dual of P , and let P k∗ denote k
application of the dual function. For example P 2∗ = (P ∗)∗ is the dual of the
dual of P . Show that for any positive integer n, P 2n∗ = P .

C-26.8 Show that if we allow linear programs to have strict inequalities, then there exists
a linear program which is neither infeasible nor unbounded, but nevertheless does
not have an optimal solution with finite objective value.

C-26.9 Prove that if there exists a point that is feasible in both a linear program and its
dual, then that point is the optimal solution in both linear programs.

C-26.10 The maximum independent set (MIS) of a graph G = (V,E) is the largest set of
vertices S ⊆ V such that for any two vertices u, v ∈ S, (u, v) /∈ E; that is, no
pair of vertices in S are neighbors. We want to create a linear program to solve
the MIS problem. We create an indicator variable iv for each vertex v ∈ V , and
the sum of the iv should denote the size of the MIS. Consider the following linear
program formulation of the MIS problem:

maximize:
∑

iv

subject to: iv ≥ 0

iv ≤ 1

iv + iv′ ≤ 1 for (v, v′) ∈ E

What’s wrong with this formulation? Give a small example graph for which
the linear program does not give a reasonable answer for the size of the maxi-
mum independent set. Why doesn’t the program give a reasonable answer in this
case?
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C-26.11 In Section 26.4, we gave a linear program to solve the shortest-path problem.
What can be said about this linear program if the input graph has a negative
cycle?

C-26.12 Give a linear programming formulation for the all-pairs shortest-path problem.

C-26.13 Give a linear programming formulation to find the minimum spanning tree of a
graph. Recall that a spanning tree T of a graph G is a connected acyclic subgraph
of G that contains every vertex of G. The minimum spanning tree of a weighted
graph G is a spanning tree T of G such that the sum of the edge weights in T is
minimized.

C-26.14 Finish the proof of Lemma 26.3.

C-26.15 Finish the proof of Theorem 26.8 by showing that if

a0 + a1x1 + a2x2 + . . . anxn = b0 + b1x1 + b2x2 + . . . bnxn,

where each xi is a real variable, then ai = bi for i = 0, 1, . . . n.

Applications

A-26.1 In geometric data compression, we are given a collection of geometric objects,
such as points in the plane, and we wish to minimize the number of bits required
to represent the points. Therefore, suppose that rather than express the full (x, y)
coordinates of such a set of points, we encode the y-coordinates of the points
using the following rudimentary data compression scheme. First, we find a line
y = ax+b that approximately passes through the points. Then, instead of storing
the full y-coordinate of each point, we store the function f(x) = ax + b and we
encode y-coordinate of each point (xi, yi) as ǫi = f(xi) − yi. Suppose you are
given the following set of points:

{(0, 3), (−1.8,−6.1), (−4.2,−11), (1.5, 4.8), (6.3, 19), (2.6, 9.1)}.

Give a linear program that, if solved, will find the function f(x) minimizing the
size of the encoded points using the above compression scheme.

A-26.2 Suppose that you are preparing for the upcoming Zombie Apocalypse. The Cen-
ters for Disease Control and Prevention recommend that any Zombie Apocalypse
Survival Kit should contain at least the following supplies:

• Water (1 gallon per person per day)
• Food (stock up on nonperishable items that you eat regularly)
• Medications (this includes prescription and nonprescription meds)
• Tools and Supplies (utility knife, duct tape, battery-powered radio, etc.)
• Sanitation and Hygiene (household bleach, soap, towels, etc.)
• Clothing and Bedding (a change of clothes for each family member and

blankets)
• Important documents (copies of your driver’s license, passport, and birth

certificate, to name a few)
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• First Aid supplies (although you’re a goner if a zombie bites you, you can
use these supplies to treat basic cuts and lacerations)

Although not officially recommended by the CDC, your kit should also include
at least one self-defense item to protect yourself, your family, and your supplies
from zombies and looters. In case of evacuation, each person must be able to
carry their survival kit with them. Therefore, your survival kit must not weigh
more than 100 lbs. In addition, you must not spend more than $500 on your kit.
Your goal is to assemble a kit that maximizes your life expectancy, subject to
these weight and cost constraints. Choose reasonable values for the weight and
cost of each category of item, and model how each category of item might affect
your life expectancy. For example, each gallon of water might increase your life
expectancy by 1 day. Then solve the corresponding linear program to determine
which supplies you should include in your survival kit.

A-26.3 A political candidate has hired you to advise them on how to best spend their
advertising budget. The candidate wants a combination of print, radio, and tele-
vision ads that maximize total impact, subject to budgetary constraints, and avail-
able airtime and print space.

type impact per ad cost per ad max ads per week

radio a 10,000 25

print b 70,000 7

tv c 110,000 15

Design and solve a linear program to determine the best combination of ads for
the campaign.

A-26.4 A perfect pizza maximizes how great it tastes and meets your recommended daily
allowance (RDA) for the three macronutrients carbohydrates, fats, and protein.
Suppose that your diet should consist of 25–35% fats, 45–65% carbohydrates,
and 10–35% proteins. Suppose further that your total calorie intake should be
is 1800–2500 calories. Given the following pizza ingredients, assign each pizza
ingredient a “taste factor” per serving that represents your personal preferences.
If your favorite ingredient is not included, look up its nutritional information
and add it to the list of toppings. Design a linear program choose how much of
each pizza topping you should include to make a pizza that meets the above con-
straints and maximizes how great it tastes. Explain how you chose your objective
function and constraints.

Item Calories Fat Carbs Protein Taste

Thin Crust (per slice) 80 0.5g 15g 0g *

Deep Dish 160 7.5 30g 0g *

Pizza Sauce (1 tbsp) 8 250mg 1g 250mg *

Mozzarella (10 g) 27 2g 298mg 3g *

Pepperoni 46 4g 353mg 2g *

Sausage 17 1g 707mg 1g *

Green Pepper 2 17mg 464mg 86mg *

Onion 4 10mg 934mg 110mg *

Mushroom 2 34mg 328mg 309mg *

Olive 11 1g 524mg 95mg *

Pineapple 5 12mg 1g 54mg *
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A-26.5 A small retail chain has three warehouses and four retail stores. Each warehouse
stores a certain amount of goods, and each retail store has a demand for a cer-
tain amount of goods. In addition, for each warehouse store pair, there is a set
shipping cost per unit of goods. (See Figure 26.10.) Design and solve a lin-
ear program to determine the minimum-cost shipping schedule that meets the
demands of each retail store.

warehouse supply

W1 100

W2 75

W3 120

retail demand

A 40

B 30

C 50

D 45

100

50

30

75
60

70

80

130
110

120

40

50

W1

W2

W3

A

B

C

D

Figure 26.10: Shipping costs for warehouses and retail stores.

A-26.6 Suppose there are four power plants, which use coal, nuclear, wind, and oil, and
four cities, Flat Top Mountain, Zephyrville, Cherenkov, and Iridescent Islands.
The power plants and cities are connected by a directed power grid, and each
link in the grid has a maximum capacity, as shown in Figure 26.11. Each city
demands power with certain constraints. Flat Top Mountain demands 8 units
of power, and insists that at least 5 units of this power be from the coal power
plant. Zephyrville demands at least 5 units of power and insists that 4 units be
generated from wind. Cherenkov demands 8 units of power and insists that 50%
of its power be from nuclear power. Iridescent Islands demands at least 6 units of
power but wants no more than 2 units of power from oil. Write a linear program
to find the maximum flow of power that meets the demands of each city subject
to the maximum capacities on the internal links in the power grid.
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Flat Top Mountain Zephyrville Iridescent Islands
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Figure 26.11: A coal, nuclear, and wind power plant power for four cities. Power

must be routed through switches in the electrical grid.

A-26.7 Suppose you are part of a trade expedition and there are 15 people in your party
(including yourself). Your final destination lies across the desert, and so you
must hire out camels to carry all of your party’s gear for that portion of your
journey. The desert can be crossed in 10 days, but it could take up to 50% longer
if something goes wrong or you encounter bad weather. You need to bring the
following supplies necessary for survival in the harsh desert conditions:

• Some number of 18L jugs of water. You must bring at least 2L of water per
person per day spent in the desert. Bring enough water to cross the desert
even if something goes wrong.

• Enough tents such that at most two people will sleep in each tent. Each tent
weighs 8kg each.

• A 1kg pack of first aid supplies per ten people-days spent in the desert (for
example, 5 people for 4 days would require 2 first aid packs).

• Some cases of food rations. Each case weighs 10kg and contains 12 rations.
Bring at least one ration per person per day spent in the desert.

• One pack per person of personal supplies (clothing, blankets, etc.) that
weigh 20kg each.

In addition, you have the following trade goods: 5 chests of spices weighing 75kg
each, 5 chests of tea weighing 50 kg each, and 5 chests of silk weighing 25kg
each. Each camel can carry a 300kg load after accounting for the food, water,
and gear required to support the camel over the long desert journey. Design a
linear program to determine the minimum number of camels required to make
the journey.
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Chapter Notes

The word “programming” in “linear programming” does not have the same meaning as it
has in computer science. It was first used in a mathematical sense by American mathemati-
cian, George B. Dantzig [54]. Linear programming was in use prior to this by the Soviet
military, thanks to Leonid Kantorovich, who invented the concept in 1939. Today, linear
programming is a standard tool of operations research, and it is used to model scheduling
and assignment problems, as well as routing and planning problems.

The complexity of the simplex method puzzled mathematicians for many decades.

While this algorithm seemed efficient in practice, carefully constructed problem instances

can produce an exponential runtime. In 1980, Leonid Khachiyan published a new LP-

solving algorithm [125] with a polynomial runtime that ran slow in practice. The ellipsoid

algorithm, as it was called, was nevertheless revolutionary in concept. Unlike the simplex

method, the ellipsoid algorithm walks through the interior of the feasible region. Narendra

Karmarkar [121] eventually improved on this idea with what is now known as the interior

point method, an algorithm that is fast in practice as well as having a polynomial runtime.

The discrepancy between the theoretical and practical running times of the simplex method

is explained by Spielman and Teng [199], who provide a new approach to analyze an algo-

rithm’s complexity in a way that is a cross between worst-case and average case analysis.



Appendix

A Useful Mathematical Facts

In this appendix, we give several useful mathematical facts. We begin with some

combinatorial definitions and facts.

Logarithms and Exponents

The logarithm function is defined as

logb a = c if a = bc.

The following identities hold for logarithms and exponents, with a, c > 0:

1. logb ac = logb a + logb c
2. logb a/c = logb a − logb c
3. logb ac = c logb a
4. logb a = (logc a)/ logc b
5. blog

c
a = alog

c
b

6. (ba)c = bac

7. babc = ba+c

8. ba/bc = ba−c.

In addition, we have the following:

Theorem A.1: If a > 0, b > 0, and c > a + b, then

log a + log b ≤ 2 log c − 2.

The natural logarithm function lnx = loge x, where e = 2.71828 . . ., is the

value of the following progression:

e = 1 +
1

1!
+

1

2!
+

1

3!
+ · · · .

In addition,

ex = 1 +
x

1!
+

x2

2!
+

x3

3!
+ · · ·

ln(1 + x) = x − x2

2!
+

x3

3!
− x4

4!
+ · · · .

There are a number of useful inequalities relating to these functions (which

derive from these definitions).
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Theorem A.2: If x > −1,
x

1 + x
≤ ln(1 + x) ≤ x.

Theorem A.3: For 0 ≤ x < 1,

1 + x ≤ ex ≤ 1

1 − x
.

Theorem A.4: For any two positive real numbers x and n,
(

1 +
x

n

)n
≤ ex ≤

(

1 +
x

n

)n+x/2
.

Integer Functions and Relations

The “floor” and “ceiling” functions are defined respectively as follows:

1. ⌊x⌋ = the largest integer less than or equal to x.

2. ⌈x⌉ = the smallest integer greater than or equal to x.

The modulo operator is defined for integers a ≥ 0 and b > 0 as

a mod b = a −
⌊a

b

⌋

b.

The factorial function is defined as

n! = 1 · 2 · 3 · · · · · (n − 1)n.

The binomial coefficient is
(

n

k

)

=
n!

k!(n − k)!
,

which is equal to the number of different combinations we can define by choosing

k different items from a collection of n items (where the order does not matter).

The name “binomial coefficient” derives from the binomial expansion:

(a + b)n =

n
∑

k=0

(

n

k

)

akbn−k.

We also have the following relationships.

Theorem A.5: If 0 ≤ k ≤ n, then
(n

k

)k
≤

(

n

k

)

≤ nk

k!
.

Theorem A.6 (Stirling’s Approximation):

n! =
√

2πn
(n

e

)n
(

1 +
1

12n
+ ǫ(n)

)

,

where ǫ(n) is O(1/n2).
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The Fibonacci progression is a numeric progression such that F0 = 0, F1 = 1,

and Fn = Fn−1 + Fn−2 for n ≥ 2.

Theorem A.7: If Fn is defined by the Fibonacci progression, then Fn is Θ(gn),
where g = (1 +

√
5)/2 is the so-called golden ratio.

Summations

There are a number of useful facts about summations.

Theorem A.8: Factoring summations:
n

∑

i=1

af(i) = a

n
∑

i=1

f(i),

provided a does not depend upon i.

Theorem A.9: Reversing the order:
n

∑

i=1

m
∑

j=1

f(i, j) =

m
∑

j=1

n
∑

i=1

f(i, j).

One special form of summation is a telescoping sum:
n

∑

i=1

(f(i) − f(i − 1)) = f(n) − f(0),

which often arises in the amortized analysis of a data structure or algorithm.

The following are some other facts about summations that often arise in the

analysis of data structures and algorithms.

Theorem A.10:
n

∑

i=1

i =
n(n + 1)

2
.

Theorem A.11:
n

∑

i=1

i2 =
n(n + 1)(2n + 1)

6
.

Theorem A.12: If k ≥ 1 is an integer constant, then
n

∑

i=1

ik is Θ(nk+1).

Another common summation is the geometric sum
n

∑

i=0

ai,

for any fixed real number 0 < a 	= 1.
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Theorem A.13:
n

∑

i=0

ai =
1 − an+1

1 − a

for any real number 0 < a 	= 1.

Theorem A.14:
∞

∑

i=0

ai =
1

1 − a

for any real number 0 < a < 1.

There is also a combination of the two common forms, called the linear expo-

nential summation, which has the following expansion:

Theorem A.15: For 0 < a 	= 1, and n ≥ 2,
n

∑

i=1

iai =
a − (n + 1)a(n+1) + na(n+2)

(1 − a)2
.

The nth harmonic number Hn is defined as

Hn =
n

∑

i=1

1

i
.

Theorem A.16: If Hn is the nth harmonic number, for n > 1, then lnn < Hn <
lnn + 1.

Proof: See Exercise C-3.11.

Useful Mathematical Techniques

To determine whether a function is little-oh or little-omega of another, it is some-

times helpful to apply the following rule.

Theorem A.17 (L’Hôpital’s Rule): If we have limn→∞ f(n) = +∞ and we
have limn→∞ g(n) = +∞, then limn→∞ f(n)/g(n) = limn→∞ f ′(n)/g′(n),
where f ′(n) and g′(n) denote the derivatives of f(n) and g(n), respectively.

In deriving an upper or lower bound for a summation, it is often useful to split

a summation as follows:
n

∑

i=1

f(i) =

j
∑

i=1

f(i) +
n

∑

i=j+1

f(i).

Another useful technique is to bound a sum by an integral. If f is a nonde-

creasing function, then, assuming the following terms are defined,
∫ b

a−1
f(x) dx ≤

b
∑

i=a

f(i) ≤
∫ b+1

a
f(x) dx.


